SOLUTION MANAGEMENT ACCOUNTING AND CONTROL NOV 2007

QUESTION 1

Uncle Pee

a)

Relevant Costs Budget Statement

	GH¢	GH¢
Contract Price		20,000
Material A $(1,000 \times 6)$	6,000	
B (1,000 x 5)	5,000	
C $(1,000 \text{ x } 4) + (700 \text{ x } 2.5)$	2,950	
D	1,500	
		15,450
Labour:		
Grade X Wages	-	
Grade Y wages (200 x 3.5)	700	
Contribution forgone (200 x 4)	800	1,500
Variable overheads:		
Grade X (50 hr x 1)	500	
Grade Y (200 hrs x 1)	_200	700
Fixed overhead expenditure:		
Incremental hire costs	300	
User cost of other contract	200	
		500
Consultant Fee		300
Net benefit from the contract		1,550

Advise

The contract is worthwhile and should be undertaken by Uncle Pee

	GH¢	GH¢
Material A	6,000	
B $(600 \text{ x } 2) + (400 \text{ x } 5)$	3,200	
C $(700 \text{ x } 3) + (300 \text{ x } 4)$	3,300	
D (200 x 4)	800	
		13,300
Labour:		
Grade X (500 x 3)	1,500	
Grade Y (200 x 3.5)	700	
Contribution forgone		2,200
Variable overheads (700 x 1)		700
Fixed overhead (250% of 2,200)		5,550
Consultant Fee		300
Machinery: Special Machine	300	
Depreciation (3 months)	900	1,200
		23,200
Contract Revenue		20,000
Loss on contract		(3,200)

Advise

The project should not be undertaken.

QUESTION 2

(a) <u>Monthly Production Budget</u>

	March	<u>April</u>	<u>May</u>
	Units	Units	Units
Budgeted Sales	180,000	240,000	250,000
Closing Stocks	48,000	50,000	46,000
	228,000	290,000	296,000
Less Opening Stocks	36,000	48,000	50,000
Production required	192,000	242,000	246,000

(b) <u>Monthly Purchases of Raw Materials</u>

(0)	1 01 01100 00 01 100 11 1					
				March	<u>April</u>	
Materials needed for pro-	oduction at 1/2 kg per	r unit		96,000	121,000	
Minimum month end st	ock	(note 1)		48,400	49,200	
				144,400	170,200	
			-	45,600	69,600	(note 2)
				98,800	100,600	
Less opening stock						
Actual purchases (40,00	0 multiple)			120,000	120,000	
Surplus purchases				21,200	<u> 19,400 </u>	

Note 1 - March: Minimum month end stock = 40% of $\frac{1}{2}$ kg x 24,200 units April: Minimum month end stock = 40% of $\frac{1}{2}$ kg x 24,600 units

Closing stock at the end of April will be the minimum stock of 49,200 kg plus surplus purchases of 19,400 kg i.e. 68,600 kg.

(c) <u>Cash Forecast for April</u>

Receipts from customers:

i	i)	For invoices sent out on 15 March (50% of 360,000) Those not taking a discount 49 ¹ / ₂ x 180,000	89,100	
i	ii)	For invoices sent out on 31 March (50% of 360,000)		
		Those taking a discount 50% of 180,000 x 98%	88,120	
		Those not taking a discount 49 ¹ / ₂ x 180,000	89,100	
i	iii)	For invoices sent out on 15 April (50% of 480,000)		
		Those taking a discount 50% of 240,000 x 98%	<u>117,600</u>	
		-	384,000	
Paymen	<u>its</u>			
I	Payme	nt for raw material bought in March (120,000 x GH¢1)	120,000	
I	Direct	wages (242,000 units x GH¢2)	96,800	
		le production overhead (192,000 units x 0.2)	38,400	
I	Fixed	production overheads (GH¢23,000 – 8,000)	15,000	
1	Admir	istration overhead (GH¢60,000 – 800)	59,200	
S	Selling	g expenses (10% of March sales of GH¢560,000)	36,000	
				<u>365,400</u>
S	Surplu	s of receipts over payments		186,000
(Cash b	alance b/f 1 April		12,000
(Cash b	alance c/f 30 April		_30,600

Note 2 - The minimum month end stock in March plus surplus purchases in March (48,400 x 21.200)kg

QUESTION 3

a)

From:	Management Accountant
To:	Head, Finance and Administration
Subject:	Alternative Budget Models
Date:	23 rd Nov. 2006

Introduction

Main body

Zero based budgets start with the concept that no item of cost is included unless justified.

<u>Advantages</u>

- 1. Involves line managers in the resource allocation decision.
- 2. Encourage such managers to see the activities of their departments as a portfolio that can be examined.
- 3. Promotes a search improved package delivery.
- 4. Emphasis that any cost incurred should be matched with traceable benefit.

Disadvantage

- 1. The zero assumption may be seen as threatening
- 2. Requires an honest approach to the cost-benefit assessment.
- 3. Same benefits may be difficult to justify in financial terms.
- 4. The initial introduction may be very time consuming and costly.

Incremental Budgeting

An incremental budget is one which is set using last year's results or budget as a starting point.

Advantages

- 1. Easy to prepare
- 2. Easy to understand
- 3. Assumptions are simple
- 4. It is not labourious

Disadvantages

- 1. The previous year's inefficiencies are perpetuated.
- 2. Inappropriate uses of referees are not curtailed.
- 3. An adverse behavioural impact may occur
- 4. Managers may spend their allocated budget unnecessarily to ensure that they are allocated the same level of resources in the next year's budget.
- (b) (i)
- It is activities which derive cost and the aim is to control the causes of costs directly rather than the costs themselves.
- Not all activities add value so it is essential to differentiate and examine activities for their value-adding potential.
- The majority of activities in a department are driven by demands and decisions beyond the immediate control of the budget holder. This relationship is ignored by conventional budget.
- More immediate and relevant performance measures are required than are found in conventional budgeting systems.
- (b) (ii)
- Clear guidelines
- Effective communication
- Participation by all levels of management
- Goal congruence
- Proper and effective coordination
- Regular and systematic monitoring
- Education
- Assignment of authority and responsibility
- Creation of responsibility centres
- Motivation
- Flexibility

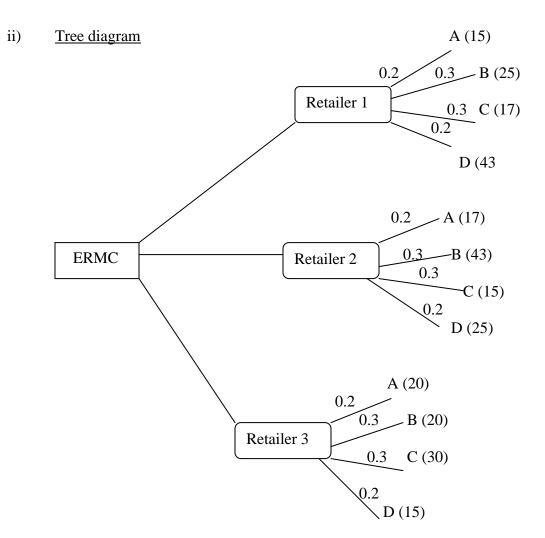
QUESTION 4

(a) A <u>mathematical model</u> which uses the tree diagram with affixed <u>probabilities</u> and <u>units of</u> <u>products</u> to <u>make decisions</u>. The decision tree utilizes <u>expected value criterion</u> to arrive at decisions. The tree is composed of <u>decision points</u> and <u>random outcome points</u> linked up by lines

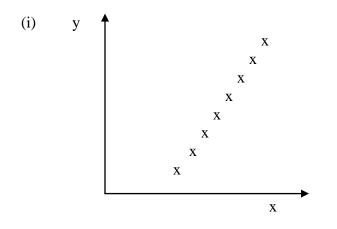
		Retai	ler 1	Retailer 2		Retailer 3	
Grade of	Probabilities	Investment	Expected	Investment	Expected	Investment	Expected
Rice			value		value		value
А	2/10	15	3.0	17	1.4	20	4.0
В	3/10	25	7.5	43	12.9	20	6.0
С	3/10	17	5.1	15	4.5	30	9.0
D	2/10	43	8.60	25	5.0	30	6.0
Overhead	-	(15)	<u>(15)</u>	(15)	<u>(15)</u>	(15)	<u>(15)</u>
			9.2		8.8		10

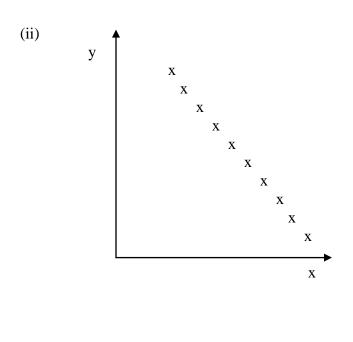
Table of Expected Values

Calculations of their expectation values


$$EV_1 = (0.2 x 15) + (0.3 x 25) + (0.3 x 17) + (0.2 x 43) + (-15) = 9.2$$

$$EV_2 = (0.2 \times 17) + (0.3 \times 43) + (0.3 \times 15) + (0.2 \times 25) + (-15) = 8.8$$


$$EV_3 = (0.2 \times 20) + (0.3 \times 20) + (0.3 \times 30) + (0.2 \times 30) + (-15) = 10$$


Expected turnover of Retailer 1	=	9.2×10^3	GH¢
Expected turnover of Retailer 2	=	$8.8 \ge 10^3$	GH¢
Expected turnover of Retailer 3	=	$10 \ge 10^3$	GH¢

i) <u>Ranking</u>

QUESTION 5

(iii) y x

Х

<u>X</u>	<u>Y</u>	<u>XY</u>	\underline{X}^2	$\underline{\mathbf{Y}^2}$
13	10	130	169	100
8	11	88	64	121
7	13.6	95.2	49	184.96
15	5.6	84	225	31.36
12.6	15.2	191.52	158.76	231.04
16	5	80	256	25.0
7	16	112	49	256.0
4	17	68	16	289.0
17	4	68	289	16.0
13	7	91	169	49.0
11	9	99	121	81.0
6.6	13.0	85.8	43.56	169.0
<u>130.2</u>	<u>126.4</u>	<u>1,192.52</u>	1,609.32	<u>1,553.36</u>

$$r = \underline{n \ \Sigma \ x \ y - \Sigma \ x \ \Sigma \ y}}{\sqrt{[n \ \Sigma \ x^{2} - (\Sigma \ x \ 1^{2} \) [n \ \Sigma \ y^{2} - (\Sigma \ y)^{2}]}}$$

$$r = \underline{12(1,192.52) - (130.2) \ (126.4)}{\sqrt{[12 \ (1609.32) - (130.2^{2} \] [12 \ (1553.36) - (126.4)^{2}]}}$$

$$= \underline{14310.24 - 16457.28}}{\sqrt{(19311.84 - 16952.04) \ (18640.32 - 15976.96)}}$$

$$= \underline{-2147.04}$$

$$\sqrt{(2359.8) \ (2663.36)}$$

$$= \underline{-2147.04}$$

iii) There is a strong inverse correlation between Marks in x and Marks in y,

QUESTION 6

a) Lend time: Elapsed time between depleted stock and replenished stock.

Stock-out: The period that stock level falls below zero level.

b) TC (q) = Co
$$\left[\frac{D}{q}\right] + Cn \left[\frac{q}{2}\right]$$

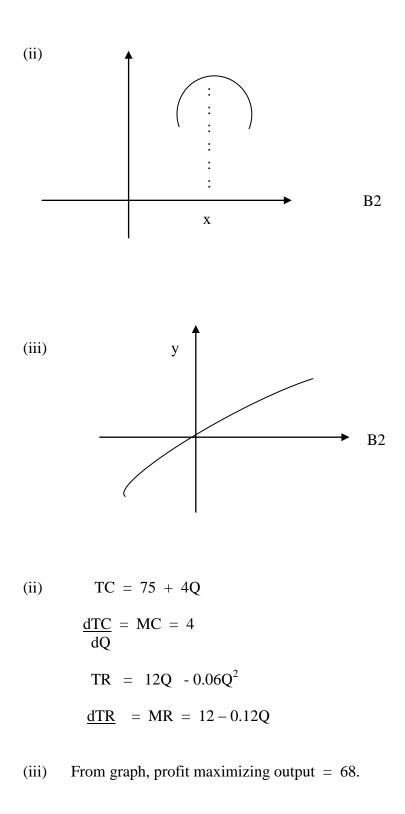
 $\frac{dTC}{dq}(q) = -Co \frac{D}{q^2} + \frac{Cn}{2}$
 $\frac{d^2TC}{dq^2}(q) = 2 Co \frac{D}{q^3} > 0$
At stationery point, $\frac{dTC}{dq}(q) = 0$, implying that
 $\frac{C_o D}{q^2} = \frac{C_n}{2}$
or $q^2 = \frac{2CoD}{Cn}$
or $q = \pm \sqrt{\frac{2CoD}{Cn}}$
But $q \ge 0$, thence $q_o = \sqrt{\frac{2CoD}{Cn}}$, called EOQ
 $TC(q) = Co \left(\frac{D}{q_o}\right) + Cn \left(\frac{q_0}{2}\right)$
where $q_0 = \sqrt{\frac{26D}{Cn}}$

c) We calculate

$$E O G = q_0 = \sqrt{\frac{2CoD}{Cn}}$$

Where,

i) D = 12,000 sachets/year Co = GH¢20/order Cn = 10% per annum of the stock value per item = o.1 x GH¢4.50 per sachet per year :. qo = $\sqrt{\frac{2 \times 20 \times 12,000}{0.1 \times 4.5}}$


$$= 1033$$

EOQ = 3266

ii)
$$TC (qo) = 20 \left(\frac{12,000}{3,266} \right) + (0.1) \left(\frac{3,266}{2} \right)$$

= 73.48 + 163.3
= 236.78
i.e $TC = GH \notin 236.78$

TC (qo) =
$$20 \left(\frac{12,000}{1,032.8}\right) + 0.45 \left(\frac{1,032.8}{2}\right)$$

= $232.4 + 232.4$
= $\underline{464.8}$

QUESTION 7

(i) y \vdots \vdots B2

(iv) Profit =
$$12Q - 0.06Q^2 - 75 - 4Q = 8Q - 0.06Q$$

When Q = 68
Profit = 8 (68) - 0.06 (68)² - 75 = 544 - 231.2 - 75
= 191.2