SOLUTION – MANAGEMENT ACCOUNTING & CONTROL (PART B) NOV 2008

QUESTION 4

- (a) Characteristics of Normal Distribution:(i) Shape: It is bell-shaped
 - (ii) Symmetry: It is symmetric about the mean
 - (iii) Area: Total area under the curve is 1
 - (iv) Random variable: It is continuous and takes all real numbers.
- (b) Let x be the number of engines sold per month at Abossey Okai

X	P(X)	XP(X)	$X^2P(X)$
200	0.1875	37.5	7500
150	0.3125	46.875	7031.25
450	0.125	56.25	25312.5
300	0.125	37.5	11250
250	0.25	62.5	15625
		240.625	66718.75

E(X) = 240.625

$$\sigma_{x} = \sqrt{E(X^{2}) - [E(X)]^{2}}$$
$$= \sqrt{66718.75 - 240.625^{2}}$$

:. $X \sim N(240.625,93.906^2)$

(i)
$$P(200 \le X \le 400) = P \left(\frac{(200 - 240.625)}{93.906} \le Z \le \frac{400 - 240.625}{93.906} \right)$$

= $P \left(-0.43 \le Z \le 1.70 \right)$

Where $Z = \frac{X - N}{\sigma} \sim N(0, 1)$

From tables, $P(200 \le X \le 400) = 0.1664 + 4554$

$$= \underline{0.6218}$$

$$P (X > 500) = P \left(Z > \underline{500 - 240.625}_{93.906} \right)$$

$$= P (Z < 2.76)$$

From tables, P(X > 500) = 0.0029

(iii) Let w be the maximum sales/month that gives a probability of 0.4

Then P (x > w) = 0.4
P
$$\left(\Xi \le \frac{w - 240.625}{93.906} \right) = 0.4$$

From tables , $\Xi = -0.25$

$$\frac{w - 240.625}{93.906} = -0.25$$
$$w = -0.25 \times 93.906 + 240.625 = 217$$

Hence, maximum expected revenue/month = 350×217 = <u>GH¢75950</u>

QUESTION 5

(a) (i)
$$y = (4x^3 + 6x^2) (3x^2 + 6x)$$

 $\frac{dy}{dx} = (4x^3 + 6x^2) (6x + 6) + (12x^2 + 12x) (3x^2 + 6x)$
 $= 24x^4 + 24x^3 + 36x^3 + 36x^2 + 36x^4 + 72x^3 + 36x^3 + 72x^2$
 $= 60x^4 + 168x^3 + 108x^2$

(ii)
$$\int \sqrt{x} \, dx = \int x^{\frac{1}{2}} \, dx$$

$$= \frac{X^{\frac{1}{2}} + 1 + c}{\frac{1}{2} + 1}$$

$$= \frac{X^{3/2}}{3/2} + c$$

$$= \frac{2}{3} X^{3/2} + c$$

$$= \frac{2}{3} (\sqrt{x})^3 + c$$

$$MC = 32x - 3182$$

$$TC = \int (32x - 3182) dx$$

$$= 16x^2 - 3182x + c$$
But C = 1000
TC = $16x^2 - 3182x + 1000$
MR = 18
TR = $\int 18 \, dx$

$$= 18x$$

Profit (P) = TR - TC
=
$$18x - [16x^2 - 3182x + 1000]$$

= $18x - 16x^2 + 3182x - 1000$
= $16x^2 + 3200x - 1000$

(ii) At maximum profit,
$$\frac{dp}{dx} = 0$$

$$P = -16x^{2} + 3200x - 1000$$

$$\frac{dp}{dx} = -32x + 3200$$

$$\frac{dp}{dx} = 0$$

$$-32x + 32000 = 0$$

$$32x = 3200$$

$$x = \frac{3200}{32}$$

$$= \underline{100}$$

(iii) When
$$x = 100$$

 $P = 16(100)^2 + 3200(100) - 1000$
 $= 160000 + 320000 - 1000$
 $= 159000$

QUESTION 6

a) Regression relates a mathematical relationship on a bivariate data.

Correlation describes the nature of spread of a bivariate data about a line or curve.

b)	Month	Advertisement	Sales			
		(GH¢00)	(GH¢00)			
		(x)	(y)	ху	x ²	y ²
	January	4	20	80	16	400
	February	8	56	448	64	3136
	March	12	64	768	144	4096
	April	6	28	168	36	784
	May	12	72	864	144	5184
	June	7	44	308	49	1936
	July	6	36	216	36	1296
	August	8	50	400	64	2500
	September	10	60	600	100	3600
	October	11	54	594	121	2916
	November	9	52	468	81	2704
	December	14	76	1064	196	5776
		$\sum x = 107$	$\sum y = 612$	$\sum xy = 5978$	$\sum x^2 = 1051$	$\sum y^2 = 34328$
	$\sum x = 107;$ $\sum y = 612;$ $\sum xy = 5978$					

$$\sum x^2 = 1051;$$
 $\sum y^2 = 34328$

Graph

$$= \frac{n \sum xy - (\sum x) (\sum y)}{n \sum x^{2} (1051) - (107)^{2}}$$

$$= \frac{(12) (5976) - (107) (612)}{(12) (1051) - (107)^{2}}$$

$$= 5.38$$

$$a = \sum y - b \sum x$$

$$n = 51 - (5.38) (8.9)$$

$$= 3.12$$

$$\therefore Y = 3.12 + (5.38) x$$

(iii) If the company advertises at GH¢1600, then sales

$$y = (3.12) + (5.38) (16)$$

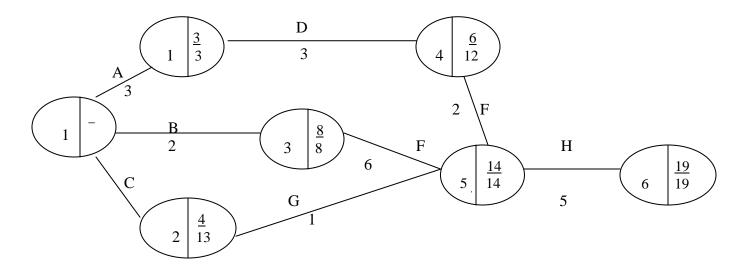
= 89.2


Therefore, the sales would be GH¢8920

(iv)
$$\mathbf{r} = \frac{\mathbf{n} \sum xy - (\sum x) (\sum y)}{\sqrt{n} 2x^{2} - (\sum x)2 \sqrt{n}2y^{2} - (\sum y)^{2}}$$
$$= \frac{(12) (5976) - (107) (612)}{\sqrt{(12) (1051) - (107)^{2} \sqrt{(12) (34328 - (612)^{2}}}$$
$$= \frac{\pm .01}{= 0.944}$$

The correlation of +94.4% is positively highly correlated.

QUESTION 7


- a) (i) A free float is the amount of spare time available given the most favourable conditions that can be used up without affecting the float of succeeding activities.
 - (ii) Independent float is the amount of time by which the activity duration can be expanded without affecting the floats of succeeding or preceding activities.
- b) (i) Network Diagram: Normal Schedule

- (a) Free float is the amount of time by which an activity can be lengthened or re-scheduled without affecting the earliest start of any following activity.
- (b) Independent float has no effect on earlier or later activities
- (c) When activity is crushed

The duration will be = 19 days as shown on the diagram below

The cast of the profit = 600 + 200 + 700 + 250 + 100 + 500 + 300 + 160 + 160= <u>GH¢2970.00</u>

(ii) From the network diagram the critical path is Activities A, J, F, H

The average daily $cost = \frac{cost \text{ of } profit}{Number \text{ of } days \text{ of } project}$

Cost of project = 2770 Duration of project = 20 days :. Average daily cost = $\frac{2770}{20}$ = GH¢138.50

(iii) Free float of activity G
 = Duration between the earliest times of both events minus activity duration
 = 15 - 7 - 3 = 5 days

(iv) From the network diagram of the normal schedule, the critical path = A, J, F, H Activity on the critical path that has to be crushed is A. Because all the other activities on the critical path costs and duration did not change.